PHYSICAL REVIEW E

VOLUME 51, NUMBER 1

JANUARY 1995

Flory approximant for the fractal dimension of the viscous-finger pattern:
Transient and asymptotic behaviors
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We present a “Flory-type” mean-field theory to calculate the fractal dimension D of the radial viscous
finger pattern formed by the less viscous fluid in a Hele-Shaw cell. We predict (a) the relation between
the interfacial tension o between the two fluids and the onset of the asymptotic behavior and (b) the vari-
ation of the effective fractal dimension with time in the transient regime for a fixed o.

PACS number(s): 68.10.Cr

Viscous-finger patterns are formed when a less viscous
fluid drives a more viscous fluid in a Hele-Shaw cell,
which consists of two closely placed mutually parallel
plates [1]. Viscous fingering serves as a prototype for the
study of the formation and growth of fingerlike interfa-
cial patterns, also called curved fronts, observed in a wide
variety of systems far from equilibrium [2]. In this work
we shall consider only the radial viscous-finger patterns
(RVFP); these are formed when the less viscous fluid is
injected through a narrow hole at the center of the upper
plate of the Hele-Shaw cell. The linear stability analysis
for the circular interface [3] is similar to that for the pla-
nar interfaces [4]; the injection speed tends to destabilize
the interface and competes against the stabilizing effects
of the interfacial tension o. In this paper we study the
RVFP on length scales much longer than the finger width
A.

The fractal dimension D of the area A covered by the
less viscous fluid in the asymptotic regime (i.e., 4 — )
is a characteristic of the RVFP. If the two fluids in the
Hele-Shaw cell are completely miscible [5] (i.e., if o van-
ishes) the tips of the fingers continue to split, as the pat-
tern evolves with time, leading to a pattern whose fractal
dimension is identical to that of the diffusion-limited ag-
gregates (DLA’s), dpp [6]. But, in the case of immisci-
ble fluids (i.e., 00), the numerical value of D remains
controversial. The aim of this paper is to present a
mean-field theory. Treating the RVFP as a mass fractal,
we predict that asymptotically, i.e., in the limit 4 — o0,
the effective fractal dimension approaches the limiting
value D =2; this prediction agrees with the results of re-
cent computer simulation [7]. Moreover, the relation be-
tween o and the onset of the asymptotic behavior as well
as the trend of variation of the effective fractal dimension
with time in the transient regime, for fixed o, revealed by
our analysis, are shown to be consistent with the corre-
sponding results of computer simulation [7]. We also dis-
cuss the reasons for a smaller value of D observed in
some laboratory experiments [8]. So far as the effects of
the interfacial tension on the fractal dimension of RVFP
are concerned, three possible scenarios emerge by exam-
ining the previous works: (i) D =dp; 4 for all finite o, in-
cluding o =0; (ii) Maher and co-workers [8] claimed that
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their experimental data indicate D =1.79%0.04dp; o
for 0#0; (iii) Jasnow and Yeung [7] extrapolated the
effective fractal dimension obtained from their computer
simulation to the limit of large area and suggested that in
the asymptotic regime D =2 for o070, i.e., asymptotical-
ly the RVFP becomes compact if 070. Our aim is to
find out, through mean-field arguments, which of the
above-mentioned scenarios is actually followed by Na-
ture.

To our knowledge, the first attempt to develop a
mean-field theory for the RVFP was made by Sarkar [9].
His calculation was based on a simplified geometrical
construction to describe the formation of fingers and
splitting (“bifurcation”) of the fingers. Through a partic-
ular choice of the numerical value of an adjustable pa-
rameter in his theory, Sarkar [9] suggested that D should
lie between 1.77 and 1.86. Here we propose a different
mean-field approach that does not require any such
specific geometrical construction for describing finger
formation and tip splitting. Our result for D is different
from that suggested by Sarkar.

For completely miscible incompressible fluids, the dy-
namics of the RVFP is governed by the Laplace equation
for pressure P, i.e.,

viP=0, (1a)
together with the boundary condition
P=0. (1b)

Similarly, the equations governing the growth of the
DLA in the steady state is given by

Viu =0, (2a)
together with the boundary condition
u=0, (2b)

where u (r,t) is the probability that a random walker is at
the point r at time ¢. Thus, formally, the two problems
are equivalent [10]. Therefore, it is not surprising that
experimentally one finds D =dp; , when o =0. In fact,
the random-walk algorithm for DLA, which is equivalent
to solving Egs. (2), has been used [5] to solve the problem
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of viscous fingering in a Hele-Shaw cell described by Egs.
(1). Furthermore, the random-walk algorithm for DLA
has been modified to incorporate the effects of interfacial
tension in the numerical studies of viscous fingering [11].
In this work we take a similar approach; we extend
Hentschel’s [12] mean-field theory for DLA to develop a
mean-field theory for RVFP by incorporating the effects
of the nonvanishing interfacial tension in a nontrivial
manner.

Hentschel’s mean-field theory [12] for the fractal di-
mension of DLA is based on a Flory-type analysis, where
some key ingredients are drawn from the well-known
Flory arguments for branched polymers [13]. Recall that
in the Flory theory for polymers the free energy consists
of two competing terms, namely, a repulsive term F,
arising from the monomer-monomer interaction and the
“elastic energy term,” which has an entropic origin. Our
strategy is to identify the analog of a monomer in the
RFVP and then to write down the expression for the
effective free energy by drawing an analogy with the
branched polymers. It is worth mentioning here that the
effective free energy we write for the RVFP is only an
analog of the free energy for polymers, as we are now
considering a nonequilibrium growth process. However,
the physical meaning of the effective free energy for the
RVFP is that, if we grow this pattern a large number of
times, the most probable configuration corresponds to the
minimum of the effective free energy just as the most
probable configuration of the polymers corresponds to
the minimum of the corresponding free energy.

The area covered by the less viscous fluid in the RVFP
corresponds to the diffusion-limited aggregate in our ap-
proach. A constant flux condition for the viscous finger
experiments in circular geometry corresponds to a con-
stant average number of random walkers sent in per unit
time. Following Hentschel [12], we introduce a screening
length /; this is the length up to which a random walker
can penetrate inside the RVFP from the outside edges.
Hentschel estimated this length scale in a mean-field ap-
proximation. Let all the N particles of the RVFP be
smeared out uniformly over a volume R where d is the
dimensionality of space. Then the probability that a lat-
tice site is occupied inside the RVFP is p =N /R“. Sup-
pose the random walker makes N, steps inside the pat-
tern before it hits the interface. From the property of
random walks, N,, ~I2. Since the random walker hits the
interface and gets captures, on the average, after taking
N, steps, N,p~1. Therefore, the screening length is
given by

l~NJ}/2~(R2/N)1/2~R(2—D)/2 . (3)

Now we assume that the RVFP behaves like an “aggre-
gate” of n blobs, each of linear size /, which are connect-
ed like a branched polymer. The assumption of equal
linear size of the blobs should be treated as a mean-field
approximation. Therefore,

nl*~N . (4)

We now identify the blobs as the analogs of the mono-
mers. Therefore, for a RVFP the analog of the elastic en-

ergy (entropy) is given by [12]
F,~R2/n'?? . 5

Similarly, the repulsive term in the effective free energy is
[12]

F,~n*/R*. (6

Next we introduce a term to account for the effects of
the interfacial tension. This term is given by the product
of the interfacial tension and the total area of the inter-
face between the two fluids. However, because of the uni-
form width of the Hele-Shaw cell, the total interfacial
area is directly proportional to the total perimeter of the
two-dimensional RVFP. The total length of the perime-
ter L measured in units of a length scale a is given by
L=a(R /a)®. If we assume that the width of a typical
finger is the smallest length scale in the problem, then
measuring the length / in the units of the finger width
gives us

L~R? . (7

Therefore, the contribution from the interfacial tension
to the effective free energy is given by

F,~TR?, (8)

where T is the dimensionless interfacial tension. Combin-
ing (5), (6), and (8), the total effective free energy is given
by

F~[R*/{n"Y1*}+n?/R?>+TRP]. 9)

We can reexpress Eq. (9) in terms of only R and N by sub-
stituting for n and [ from Egs. (3) and (4), getting

F~[R+R°N*+TR?]. (10)

Minimization of the effective free energy (10) with respect
to R leads to

1+DTRP~D=6R "'N*. (11)

Next, taking the natural logarithm of both sides of (11)
and then differentiating InN with respect to InR and,
finally, using N ~R D we get

7—4D+(D —1)[1+{TDRP~ D}~ 1171=0 .  (12)

Equation (12) determines D for given T and R. Of
course, if D varies with R, it is more appropriate to call it
an effective fractal dimension, denoted by D .4; from now
on, the symbol D will be reserved for the true asymptotic
fractal dimension to distinguish it from D ..

Before analyzing the full Eq. (12), consider its implica-
tions in two limiting situations: (a) for completely misci-
ble fluids (i.e., T =0), Eq. (12) reduces to 7—4D =0, i.e.,
D =1.75, the well-known [12] mean-field estimate of
dpya; (b) in the limit of large interfacial tension (7 — o0 ),
Eq. (12) leads to D =2, independent of R. Thus, accord-
ing to our theory, the RVFP is compact during all stages
of its evolution, provided T— . This is consistent with
intuitive expectation as interfacial tension tends to fill out
holes in the pattern.
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For all finite nonzero values of T, the effective fractal
dimension D, obtained by numerically solving Eq. (12)
depends on the choice of R. Indeed, for a given T, D is
a monotonically increasing function of R (see Fig. 1). It
is interesting to note that D. approaches the limiting
value D =2 in the asymptotic regime for all nonzero T.
Although this prediction is based on mean-field argu-
ments, this is consistent with the results of computer
simulation [7] (see Fig. 6 of Ref. [7]). Moreover, for an
evolving RVFP, the smaller T is the longer the transient
regime is. These are the main results of this paper.

Next we present a quantitative treatment of the cross-
over from DLA to D =2. Introducing a variable
X =TDRP ™!, we can reexpress Eq. (12) as

X=(7—4D)/(3D —6) . (13)

Identifying D =1.875 (i.e., midway between D =1.75
and D =2) as the approximate location of the crossover
point, we find from Eq. (13) that the location of the cross-
over point is given by

=4, (14)

Thus, for a given value of T, the location of the crossover
point in Fig. 1 is given by the relation

logoR = (553 )[logo(32)—log,,T] . (15)

The crossover from DLA to D =2, described by Eq. (15),
is another quantitative prediction of our theory. For ex-
ample, for the three different values of 7, namely,
T,=10"1, T,=10"% and T;=10"% the corresponding
approximate values of the crossover radii given by Eq.
(15) are, respectively, 9.4A(T,), 3.5X10*A(T,), and
9.4 X 108A( T;), where the finger width A(T) is an increas-
ing function of T.

So far as the measurement of D is concerned, for not-
so-large values of 7, the asymptotic regime may be well
beyond the normal length and time scales of the laborato-
ry experiments [8] on RFVP. This, we believe, is the
reason for the difficulty in extracting the asymptotic frac-
tal dimension of RVFP from laboratory experiments and
computer simulation.

Maher and co-workers [8] did not vary the interfacial
tension directly in their experiments. Instead, by varying
the flow rate Q, they varied the dimensionless driving
force C=Qu/(bo), where p is the viscosity and b is the
gap between the two plates. A larger flow rate is
effectively equivalent to a smaller o and vice versa. At
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FIG. 1. The effective fractal dimension D.g, for the viscous
fingering in a Hele-Shaw cell, plotted as a function of the loga-
rithm of linear size (“radius”) R of the RVFP for four different
values of the dimensionless interfacial tension 7. The symbols
%, 0, X, A, O, and O correspond to T=107%, 1077, 107¢,
1073, 1074, and 1073, respectively.

first sight, it may be tempting to compare our prediction
for large T with the experimental data for small C. Al-
though the experimentally observed value for D in the
latter regime is, indeed, 2, it must not be regarded as evi-
dence in favor of our prediction. Small C corresponds to
large finger width A and, hence, the compactness of the
RVFP observed by Maher and co-workers in this regime
is a consequence of the fact that the radial size of the pat-
tern is much smaller than A. On the other hand, our
theory has been developed for the opposite limit, namely,
radial size of the pattern much larger than A. Therefore,
our theoretical prediction cannot be compared directly
with the experimental data of Maher and co-workers [8].
We urge our experimentalist colleagues to test our pre-
diction either by directly varying the interfacial tension
or by using two strongly immiscible fluids (i.e., large o),
preferably in larger Hele-Shaw cells so as to ensure the
probing of the true asymptotic regime.

[1] For reviews, see, for example, D. Bensimon, L. P. Ka-
danoff, S. Liang, B. 1. Shraiman, and C. Tang, Rev. Mod.
Phys. 58, 977 (1986). See also, A. A. Sonin, Rev. Nuovo
Cimento 14, 1 (1991); H. Van Damme, in The Fractal Ap-
proaches to Heterogeneous Chemistry, edited by D. Avnir
(Wiley, New York, 1989).

[2] For reviews, see, for example, J. S. Langer, Rev. Mod.
Phys. 52, 1 (1980). See also J. S. Langer, in Change and
Matter, edited by J. Souletie, J. Vannimenus, and R. Stora

(Elsevier, New York, 1987); S. C. Huang and M. E.
Glicksman, Acta Metall. 29, 701 (19981); W. Kurz and D.
J. Fischer, Fundamentals of Solidification (Trans-Tech,
Aedermannsdorf, Switzerland, 1986); D. A. Kessler, J.
Koplik, and H. Levine, Adv. Phys. 37, 255 (1988); Dynam-
ics of Curved Fronts, edited by P. Pelce (Academic, New
York, 1988); P. Pelce, in Liquids at Interfaces, edited by J.
Charvolin, J. F. Joanny, and J. Zinn-Justin (Elsevier, New
York, 1990).



410 BURAGOHAIN, BANDHU, BHATTACHARJEE, AND CHOWDHURY 51

[3] L. Paterson, J. Fluid Mech. 113, 513 (1981). A 35, 1245 (1987); S. E. May and J. V. Maher, ibid. 40,
[4] R. L. Chuoke, P. Van Meurs, and C. Van der Peol, Pet. 1726 (1989).
Trans. AIME 216, 188 (1959). [9] S. K. Sarkar, Phys. Rev. Lett. 65, 2680 (1990).
[5]J. Nittmann, G. Daccord, and H. E. Stanley, Nature 314, [10] L. Paterson, Phys. Rev. Lett. 52, 1621 (1984).
141 (1985); G. Daccord, J. Nittmann, and H. E. Stanley, [11]L. P. Kadanoff, J. Stat. Phys. 39, 267 (1985); C. Tang,
Phys. Rev. Lett. 56, 336 (1986). Phys. Rev. A 31, 1977 (1985); S. Liang, ibid. 33, 2663
[6] P. Meakin, in Phase Transitions, edited by C. Domb and J. (1985).
L. Lebowitz (Academic, New York, 1988), Vol. 12. [12] H. G. E. Hentschel, Phys. Rev. Lett. 52, 212 (1984).
[7] D. Jasnow and C. Yeung, Phys. Rev. E 47, 1087 (1993). [13] M. Daoud and A. Lapp, J. Phys. Condens. Matter 2, 4021

[8] S. N. Rauseo, J. P. D. Barnes, and J. V. Maher, Phys. Rev. (1990).



